Урок химии на тему "электролитическая диссоциация". Электролитическая диссоциация - как ее понять? Стадии диссоциации веществ с ионной связью

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

ОПРЕДЕЛЕНИЕ

Процесс распада электролитов на ионы в водных растворах и расплавах под действием электрического тока называется электролитической диссоциацией .

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА ↔ К + + А −

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H +), а точнее – гидроксония (H 3 O +), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO 3 ↔ H + + NO 3 −

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH −), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH ↔ Na + + OH −

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH 4 +) и анионы кислотных остатков.

CaCl 2 ↔ Ca 2+ + 2Cl −

Многоосновные кислоты и основания диссоциируют ступенчато.

H 2 SO 4 ↔ H + + HSO 4 − (I ступень)

HSO 4 − ↔ H + + SO 4 2- (II ступень)

Ca(OH) 2 ↔ + + OH − (I ступень)

+ ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl (молекулярная форма)

Ba 2+ + 2 Cl − + 2 Na + + SO 4 2- = BaSO 4 ↓ + 2 Na + + 2 Cl − (полная ионная форма)

Ba 2+ + SO 4 2- = BaSO 4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H 2 O ↔ H + + OH −

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = K W

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН).

Лекция. Теория электролитической диссоциации.

Электролиты, неэлектролиты. Электролитическая диссоциация.

Причину отклонения от законов Вант-Гоффа и Рауля впервые установил в 1887 г шведский ученый Сванте Аррениус, предложив теорию электролитической диссоциации, которая основывается на двух постулатах:

· Вещества, растворы которых являются электролитами (т.е. проводят электрический ток), при растворении распадаются на частицы (ионы), которые образуются в результате диссоциации растворенного вещества. Число частиц при этом увеличивается. Ионы, заряженные положительно получили название катионы , т.к. под действием электрического поля движутся к катоду.Ионы заряженные отрицательно – анионы , т.к. под действием электрического поля движутся к аноду. К электролитам относятся соли, кислоты и основания.

Al(NO3)3 ® Al ³ + + NO3ֿ

· Электролиты диссоциируют не полностью. Способность вещества к диссоциации характеризуется значением степени электролитической диссоциации - a. Степенью электролитической диссоциации называется отношение количества вещества электролита, распавшегося на ионы, к общему количеству растворенного электролита.

a = nионизированное / Nрастворенное

n-количество молекул распавшихся на ионы

N-общее количество молекул в растворе

a- степень электролитической диссоциации

Значение a может изменяться от 0 до 1, часто a выражается в процентах (от 0 до 100%). Степень диссоциации показывает, какая часть растворенного количества электролита при данных условиях находится в растворе в виде гидратированных ионов.

Причины электролитической диссоциации обусловлены:

· характером химических связей в соединениях (к электролитам относятся вещества с ионной или ковалентной сильнополярной связью)

· характером растворителя: молекула воды полярна, т.е. является диполем

Таким образом, электролитической диссоциацией называют процесс распадаионных или полярных соединений на ионы под действием полярных молекул растворителя.

Механизм электролитической диссоциации.

Теорию Аррциуса значительно развили русские ученые И.А.Каблуков и В.А.Кистяковский, они доказали, что при растворении электролита происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы, т.е. в растворе находятся гидратированные ионы.

Легче всего диссоциация вещества с ионной связью. Последовательность процессов происходящих при диссоциации веществ с ионной связью (солей, щелочей) будет такой:

· ориентация молекул диполей воды около ионов кристалла

· гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла


· диссоциация (распад) кристалла электролита на гидратированные ионы.

С учетом гидратации ионов уравнение диссоциации выглядит так:

NaCl + X H2O ® Na + n H2O + Cl - n H2O

Так как состав гидратированных ионов не всегда постоянен, уравнение записывают сокращенно:

NaCl ® Na + + Cl -

Аналогично происходит и процесс диссоциации веществ с полярной связью, последовательность происходящих процессов следующая:

· ориентация молекул воды вокруг полюсов молекулы электролита

· гидратация (взаимодействие) молекулы воды с молекулами электролита

· ионизация молекул электролита (превращение ковалентной полярной связи в ионную)

· диссоциация (распад) молекул электролита на гидратированные ионы.

HCl + H2O ® H3O + + Cl -

HCl ® H + + Cl -

В процессе диссоциации ион водорода в свободном виде не встречается, только в виде иона гидроксония H3O + .

РАСТВОРЫ
ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ
ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

Теория электролитической диссоциации

(С. Аррениус, 1887г.)

1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации (a ) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n ) к общему числу молекул, введенных в раствор (N ).

a = n / N 0< a <1

Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например , NaCl ) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например , HCl ), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

Электролиты и неэлектролиты

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H 2 O ), хотя он является основным участником.

CaCl 2 « Ca 2+ + 2Cl -

KAl(SO 4) 2 « K + + Al 3+ + 2SO 4 2-

HNO 3 « H + + NO 3 -

Ba(OH) 2 « Ba 2+ + 2OH -

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например , для

Al 2 (SO 4) 3 ––2 (+3) + 3 (-2) = +6 - 6 = 0

KCr(SO 4) 2 ––1 (+1) + 3 (+3) + 2 (-2) = +1 + 3 - 4 = 0

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl , HBr , HI , HClO 4 , H 2 SO 4 , HNO 3 ) и сильные основания (LiOH , NaOH , KOH , RbOH , CsOH , Ba (OH ) 2 , Sr (OH ) 2 , Ca (OH ) 2 ).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH , C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca 3 (PO 4 ) 2 ; Cu (OH ) 2 ; Al (OH ) 3 ; NH 4 OH ) ;

4) вода.

Они плохо (или почти не проводят) электрический ток.

СH 3 COOH « CH 3 COO - + H +

Cu (OH ) 2 « [ CuOH ] + + OH - (первая ступень)

[ CuOH ] + « Cu 2+ + OH - (вторая ступень)

H 2 CO 3 « H + + HCO - (первая ступень)

HCO 3 - « H + + CO 3 2- (вторая ступень)

Неэлектролиты

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c ) и составу молекулы электролита (стехиометрическим индексам), например :

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a ) - отношение числа распавшихся на ионы молекул (n ) к общему числу растворенных молекул (N ):

a = n / N

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr , NH 4 OH , Ba (OH ) 2 , H 2 SO 4 и CH 3 COOH .

Степень диссоциации слабых электролитов a = 0,3.

Решение

KBr , Ba (OH ) 2 и H 2 SO 4 - сильные электролиты, диссоциирующие полностью (a = 1).

KBr « K + + Br -

0,01 M

Ba(OH) 2 « Ba 2+ + 2OH -

0,01 M

0,02 M

H 2 SO 4 « 2H + + SO 4

0,02 M

[ SO 4 2- ] = 0,01 M

NH 4 OH и CH 3 COOH – слабые электролиты (a = 0,3)

NH 4 OH + 4 + OH -

0,3 0,01 = 0,003 M

CH 3 COOH « CH 3 COO - + H +

[ H + ] = [ CH 3 COO - ] = 0,3 0,01 = 0,003 M

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O ) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH 4 OH , если степень диссоциации равна 0,01.

Решение

Концентрации молекул NH 4 OH , которые к моменту равновесия распадутся на ионы, будет равна a c . Концентрация ионов NH 4 - и OH - - будет равна концентрации продиссоциированных молекул и равна a c (в соответствии с уравнением электролитической диссоциации)

NH 4 OH

NH 4 +

OH -

c - a c

A c = 0,01 0,1 = 0,001 моль/л

[ NH 4 OH ] = c - a c = 0,1 – 0,001 = 0,099 моль/л

Константа диссоциации (K D ) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше K D , тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

Первая ступень:

H 3 PO 4 « H + + H 2 PO 4 -

K D 1 = () / = 7,1 10 -3

Вторая ступень:

H 2 PO 4 - « H + + HPO 4 2-

K D 2 = () / = 6,2 10 -8

Третья ступень:

HPO 4 2- « H + + PO 4 3-

K D 3 = () / = 5,0 10 -13

K D 1 > K D 2 > K D 3

Пример

Получите уравнение, связывающее степень электролитической диссоциации слабого электролита (a ) с константой диссоциации (закон разбавления Оствальда) для слабой одноосновной кислоты НА .

HA « H + + A +

K D = () /

Если общую концентрацию слабого электролита обозначить c , то равновесные концентрации Н + и A - равны a c , а концентрация недиссоциированных молекул НА - (c - a c ) = c (1 - a )

K D = (a c a c) / c(1 - a ) = a 2 c / (1 - a )

В случае очень слабых электролитов (a £ 0,01 )

K D = c a 2 или a = \ é (K D / c )

Пример

Вычислите степень диссоциации уксусной кислоты и концентрацию ионов H + в 0,1 M растворе, если K D (CH 3 COOH ) = 1,85 10 -5

Решение

Воспользуемся законом разбавления Оствальда

\ é (K D / c ) = \ é((1,85 10 -5) / 0,1 )) = 0,0136 или a = 1,36%

[ H + ] = a c = 0,0136 0,1 моль/л

Произведение растворимости

Определение

Поместим в химический стакан какую-либо труднорастворимую соль, например , AgCl и добавим к осадку дистиллированной воды. При этом ионы Ag + и Cl - , испытывая притяжение со стороны окружающих диполей воды, постепенно отрываются от кристаллов и переходят в раствор. Сталкиваясь в растворе, ионы Ag + и Cl - образуют молекулы AgCl и осаждаются на поверхности кристаллов. Таким образом, в системе происходят два взаимно противоположных процесса, что приводит к динамическому равновесию, когда в единицу времени в раствор переходит столько же ионов Ag + и Cl - , сколько их осаждается. Накопление ионов Ag + и Cl - в растворе прекращается, получается насыщенный раствор . Следовательно, мы будем рассматривать систему, в которой имеется осадок труднорастворимой соли в соприкосновении с насыщенным раствором этой соли. При этом происходят два взаимно противоположных процесса:

1) Переход ионов из осадка в раствор. Скорость этого процесса можно считать постоянной при неизменной температуре: V 1 = K 1 ;

2) Осаждение ионов из раствора. Скорость этого процесса V 2 зависит от концентрации ионов Ag + и Cl - . По закону действия масс:

V 2 = k 2

Так как данная система находится в состоянии равновесия, то

V 1 = V 2

k 2 = k 1

K 2 / k 1 = const (при T = const)

Таким образом, произведение концентраций ионов в насыщенном растворе труднорастворимого электролита при постоянной температуре является постоянной величиной . Эта величина называется произведением растворимости (ПР ).

В приведенном примереПР AgCl = [ Ag + ] [ Cl - ] . В тех случаях, когда электролит содержит два или несколько одинаковых ионов, концентрация этих ионов, при вычислении произведения растворимости должна быть возведена в соответствующую степень.

Например , ПР Ag 2 S = 2 ; ПР PbI 2 = 2

В общем случае выражение произведения растворимости для электролита A m B n

ПР A m B n = [A] m [B] n .

Значения произведения растворимости для разных веществ различны.

Например , ПР CaCO 3 = 4,8 10 -9 ; ПР AgCl = 1,56 10 -10 .

ПР легко вычислить, зная ра c творимость соединения при данной t ° .

Пример 1

Растворимость CaCO 3 равна 0,0069 или 6,9 10 -3 г/л. Найти ПР CaCO 3 .

Решение

Выразим растворимость в молях:

S CaCO 3 = ( 6,9 10 -3 ) / 100,09 = 6,9 10 -5 моль/л

M CaCO 3

Так как каждая молекула CaCO 3 дает при растворении по одному иону Ca 2+ и CO 3 2- , то
[ Ca 2+ ] = [ CO 3 2- ] = 6,9 10 -5 моль/л ,
следовательно,
ПР CaCO 3 = [ Ca 2+ ] [ CO 3 2- ] = 6,9 10 –5 6,9 10 -5 = 4,8 10 -9

Зная величину ПР , можно в свою очередь вычислить растворимость вещества в моль/л или г/л.

Пример 2

Произведение растворимости ПР PbSO 4 = 2,2 10 -8 г/л.

Чему равна растворимость PbSO 4 ?

Решение

Обозначим растворимость PbSO 4 через X моль/л. Перейдя в раствор, X молей PbSO 4 дадут X ионов Pb 2+ и X ионов SO 4 2- , т.е.:

= = X

ПР PbSO 4 = = = X X = X 2

X = \ é(ПР PbSO 4 ) = \ é(2,2 10 -8 ) = 1,5 10 -4 моль/л.

Чтобы перейти к растворимости, выраженной в г/л, найденную величину умножим на молекулярную массу, после чего получим:

1,5 10 -4 303,2 = 4,5 10 -2 г/л .

Образование осадков

Если

[ Ag + ] [ Cl - ] < ПР AgCl - ненасыщенный раствор

[ Ag + ] [ Cl - ] = ПР AgCl - насыщенный раствор

[ Ag + ] [ Cl - ] > ПР AgCl - перенасыщенный раствор

Осадок образуется в том случае, когда произведение концентраций ионов малорастворимого электролита превысит величину его произведения растворимости при данной температуре. Когда ионное произведение станет равным величине ПР , выпадение осадка прекращается. Зная объем и концентрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример 3

Выпадает ли осадок при смешении равных объемов 0,2 M растворов Pb (NO 3 ) 2 и NaCl .
ПР
PbCl 2 = 2,4 10 -4 .

Решение

При смешении объем раствора возрастает вдвое и концетрация каждого из веществ уменьшится вдвое, т.е. станет 0,1 M или 1,0 10 -1 моль/л. Таковы же будут концентрации Pb 2+ и Cl - . Следовательно, [ Pb 2+ ] [ Cl - ] 2 = 1 10 -1 (1 10 -1 ) 2 = 1 10 -3 . Полученная величина превышает ПР PbCl 2 (2,4 10 -4 ) . Поэтому часть соли PbCl 2 выпадает в осадок. Из всего сказанного выше можно сделать вывод о влиянии различных факторов на образование осадков.

Влияние концентрации растворов

Труднорастворимый электролит с достаточно большой величиной ПР нельзя осадить из разбавленных растворов. Например , осадок PbCl 2 не будет выпадать при смешении равных объемов 0,1 M растворов Pb (NO 3 ) 2 и NaCl . При смешивании равных объемов концентрации каждого из веществ станут 0,1 / 2 = 0,05 M или 5 10 -2 моль/л . Ионное произведение [ Pb 2+ ] [ Cl 1- ] 2 = 5 10 -2 (5 10 -2 ) 2 = 12,5 10 -5 . Полученная величина меньше ПР PbCl 2 , следовательно выпадения осадка не произойдет.

Влияние количества осадителя

Для возможно более полного осаждения употребляют избыток осадителя.

Например , осаждаем соль BaCO 3 : BaCl 2 + Na 2 CO 3 ® BaCO 3 ¯ + 2 NaCl . После прибавления эквивалентного количества Na 2 CO 3 в растворе остаются ионы Ba 2+ , концентрация которых обусловлена величиной ПР .

Повышение концентрации ионов CO 3 2- , вызванное прибавлением избытка осадителя (Na 2 CO 3 ) , повлечет за собой соответственное уменьшение концентрации ионов Ba 2+ в растворе, т.е. увеличит полноту осаждения этого иона.

Влияние одноименного иона

Растворимость труднорастворимых электролитов понижается в присутствии других сильных электролитов, имеющих одноименные ионы. Если к ненасыщенному раствору BaSO 4 понемногу прибавлять раствор Na 2 SO 4 , то ионное произведение, которое было сначала меньше ПР BaSO 4 (1,1 10 -10 ) , постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Влияние температуры

ПР является постоянной величиной при постоянной температуре. С увеличением температуры ПР возрастает, поэтому осаждение лучше проводить из охлажденных растворов.

Растворение осадков

Правило произведения растворимости важно для переведения труднорастворимых осадков в раствор. Предположим, что надо растворить осадок Ba С O 3 . Раствор, соприкасающийся с этим осадком, насыщен относительно Ba С O 3 .
Это означает, что
[ Ba 2+ ] [ CO 3 2- ] = ПР BaCO 3 .

Если добавить в раствор кислоту, то ионы H + свяжут имеющиеся в растворе ионы CO 3 2- в молекулы непрочной угольной кислоты:

2H + + CO 3 2- ® H 2 CO 3 ® H 2 O + CO 2 ­

Вследствие этого резко снизится концентрация иона CO 3 2- , ионное произведение станет меньше величины ПР BaCO 3 . Раствор окажется ненасыщенным относительно Ba С O 3 и часть осадка Ba С O 3 перейдет в раствор. При добавлении достаточного количества кислоты можно весь осадок перевести в раствор. Следовательно, растворение осадка начинается тогда, когда по какой-либо причине ионное произведение малорастворимого электролита становится меньше величины ПР . Для того, чтобы растворить осадок, в раствор вводят такой электролит, ионы которого могут образовывать малодиссоциированное соединение с одним из ионов труднорастворимого электролита. Этим объясняется растворение труднорастворимых гидроксидов в кислотах

Fe(OH) 3 + 3HCl ® FeCl 3 + 3H 2 O

Ионы OH - связываются в малодиссоциированные молекулы H 2 O .

Таблица. Произведение растворимости (ПР) и растворимость при 25 AgCl

1,25 10 -5

1,56 10 -10

AgI

1,23 10 -8

1,5 10 -16

Ag 2 CrO 4

1,0 10 -4

4,05 10 -12

BaSO 4

7,94 10 -7

6,3 10 -13

CaCO 3

6,9 10 -5

4,8 10 -9

PbCl 2

1,02 10 -2

1,7 10 -5

PbSO 4

1,5 10 -4

2,2 10 -8

ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Растворы всех веществ можно разделить на две группы: проводят электрический ток или проводниками не являются.

С особенностями растворения веществ можно познакомиться экспериментально, исследуя электропроводность растворов этих веществ с помощью прибора, изображённого на рисунке

Пронаблюдайтеза следующим экспериментом «Изучение электрической проводимости веществ».

Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации . В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде или расплавлении распадаются (диссоциируют) на ионы – положительно (катионы) и отрицательно (анионы) заряженныечастицы.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы ( Na + , Mg 2+ , А l 3+ и т.д.) - или из нескольких атомов - это сложные ионы ( N О 3 - , SO 2- 4 , РО З- 4 и т.д.).

2. В растворах и расплавах электролиты проводят электрический ток .

Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

ИСПЫТАНИЕ ВЕЩЕСТВ НА ЭЛЕКТРОПРОВОДНОСТЬ

ВЕЩЕСТВА

ЭЛЕКТРОЛИТЫ

НЕЭЛЕКТРОЛИТЫ

Электролиты – это вещества, водные растворы или расплавы которых проводят электрический ток

Неэлектролиты – это вещества, водные растворы или расплавы которыхне проводят электрический ток

Вещества с ионной химической связью или ковалентной сильнополярной химической связью – кислоты, соли, основания

Вещества с ковалентной неполярной химической связью или ковалентной слабополярнойхимической связью

В растворах и расплавах образуются ионы

В растворах и расплавах не образуются ионы

ПАМЯТКА

ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ РАСТВОРЕНИИ ВЕЩЕСТВ В ВОДЕ

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости.Например, уравнение диссоциации молекулы электролита К A на катион К + и анион А - в общем виде записывается так:

КА ↔ K + + A -

Рассмотрим процесс растворения электролитов в воде

В целом молекула воды не заряжена. Но внутри молекулы Н 2 О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Растворение в воде веществ с ионной химической связью

(на примере хлорида натрия – поваренной соли)

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде (рис. 2) состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na + и Сl – из кристалла в раствор происходит образование гидратов этих ионов.

Растворение в воде веществ с ковалентной сильнополярной химической связью

(на примере соляной кислоты)

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными (рис.3).

Основные положения:

Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении.

Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.

Ионы – это атомы или группы атомов, обладающие положительным (катионы ) или отрицательным (анионы ) зарядом.

Ионы отличаются от атомов как по строению, так и по свойствам

Пример 1. Сравним свойства молекулярного водорода (состоит из двух нейтральных атомов водорода) со свойствами иона.

Атом водорода

Ион водорода

1 Н 0 1 s 1

1 Н + 1 s 0

Пример 2. Сравним свойства атомарного и молекулярного хлора со свойствами иона.

Атом хлора

Ион хлора

17 Cl 0 1s 2 2s 2 2p 6 3s 2 3p 5

17 Cl - 1s 2 2s 2 2p 6 3s 2 3p 6

Атомы хлора имеют незавершённый внешний уровень, поэтому они химически очень активны, принимают электроны и восстанавливаются.

Именно поэтому газообразный хлор ядовит, при вдыхании его наступает отравление организма.

Ионы хлора имеют завершённый внешний уровень, поэтому они химически неактивны, находятся в устойчивом электронном состоянии.

Ионы хлора входят в состав поваренной соли, употребление в пищу которой не вызывает отравления организма.

Запомните!

1. Ионы отличаются от атомов и молекул по строению и свойствам;

2. Общий и характерный признак ионов – наличие электрических зарядов;

3. Растворы и расплавы электролитов проводят электрический ток из-за наличия в них ионов.

Главная причина диссоциации – поляризационное взаимодействие полярных молекул растворителя с молекулами растворенного вещества.Например, молекула воды – полярна, ее дипольный момент μ = 1,84 D, т.е. она обладает сильным поляризующим действием. В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по-разному. Наиболее типичны два случая:

Рис. 4.8 Растворение вещества с ионной кристаллической решеткой

1. Растворенное вещество с ионной связью (NaCl, KCl и т.д.). Кристаллы таких веществ уже состоят из ионов. При их растворении полярные молекулы воды (диполи) будут ориентироваться к ионам своими противоположными концами. Между ионами и диполями воды возникают силы взаимного притяжения (ион-дипольное взаимодействие), в результате связь между ионами ослабевает, и они в гидратированном виде переходят в раствор (рис. 4.8). В рассматриваемом случае одновременно с растворением происходит диссоциация молекул. Вещества с ионной связью диссоциируют легче всего.

2. Растворенное вещество с полярной ковалентной связью (например, НCl, H 2 SO 4 , H 2 S и др.). Здесь также вокруг каждой полярной молекулы вещества ориентируются соответствующим образом диполи воды с образованием гидратов. В результате такого диполь-дипольного взаимодействия связующее электронное облако (электронная пара) практически полностью сместится к атому с большей электроотрицательностью, при этом полярная молекула превращается в ионную (стадия ионизации молекулы) и затем распадается на ионы, которые переходят в раствор в гидратированном виде (рис. 4.9). Диссоциация может быть полной или частичной – все зависит от степени полярности связей в молекуле.

ионизация диссоциация

Рис. 4.9 Растворение вещества с ковалентной полярной связью

Различие между рассмотренными случаями заключается в том, что в случае ионной связи ионы существовали в кристалле, а в случае полярной – они образуются в процессе растворения. Соединения, содержащие одновременно и ионные, и полярные связи, сначала диссоциируют по ионным, а затем по ковалентным полярным связям. Например, гидросульфат натрия NаНSО 4 полностью диссоциирует по связи Na-O, частично – по связи H-O и практически не диссоциирует по малополярным связям серы с кислородом.

Таким образом, при растворении диссоциируют только соединения с ионной и ковалентной полярной связью и только в полярных растворителях.

Степень диссоциации. Сильные и слабые электролиты

Количественной характеристикой электролитической диссоциации является степень диссоциации электролита в растворе. Эта характеристика была введена Аррениусом. Степень диссоциации – α - это отношение числа молекул N, распавшихся на ионы, к общему числу молекул растворенного электролита N 0:

α выражают в долях единицы или в %.

По степени диссоциации электролиты делят на сильные или слабые.

При растворении в воде сильные электролиты диссоциируют практически полностью, процесс диссоциации в них необратим. У сильных электролитов степень диссоциации в растворах равна единице (α=1) и почти не зависит от концентрации раствора.В уравнениях диссоциации сильных электролитов ставят знак “=” или “ ”. Например, уравнение диссоциации сильного электролита сульфата натрия имеет вид

Nа 2 SО 4 = 2Nа + + SО 4 2 - .

К сильным электролитам в водных растворах относятся почти все соли, основания щелочных и щелочноземельных металлов, кислоты: H 2 SO 4 , HNO 3 , HCl, HBr, HI, HСlO 4 , HClO 3 , HBrO 4 , HBrO 3 , HIO 3 , H 2 SeO 4 , HMnO 4 , H 2 MnO 4 и т.д.

К слабым электролитам относятся электролиты, степень диссоциации которых в растворах меньше единицы (α<1) и она уменьшается с ростом концентрации.

Процесс диссоциации слабых электролитов протекает обратимо до установления равновесия в системе между нераспавшимися молекулами растворенного вещества и его ионами. В уравнениях диссоциации слабых электролитов ставят знак «обратимости». Например, уравнение диссоциации слабого электролита гидроксида аммония имеет вид

NН 4 + ОН NН 4 + + ОН -

К слабым электролитам относят воду, почти все органические кислоты (муравьиную, уксусную, бензойную и т.д.), ряд неорганических кислот (H 2 SO 3 , HNO 2 , H 2 CO 3 , H 3 AsO 4 , H 3 AsO 3 , H 3 BO 3 , H 3 PO 4 , H 2 SiO 3 , H 2 S, H 2 Se, H 2 Te, HF, HCN, HCNS), основания p-, d-, f- элементов (Al(OH) 3 , Cu(OH) 2 , Fe(OH) 2 и т.д.), гидроксид аммония, гидроксиды магния и бериллия, некоторые соли (CdI 2 , CdCl 2 , HgCl 2 , Hg(CN) 2 , Fe(CNS) 3 и т.д.).

В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% - средними, менее 3% - слабыми электролитами.

Численное значение степени электролитической диссоциации зависит от различных факторов:

1 . Природа растворителя.

Это связано с величиной диэлектрической проницаемости растворителя ε. Как следует из закона Кулона, сила электростатического притяжения двух разноименно заряженных частиц зависит не только от величины их зарядов, расстояния между ними, но и от природы среды, в которой взаимодействуют заряженные частицы, т.е. от ε:

Например, при 298 К ε(Н 2 О) = 78,25, а ε(С 6 Н 6) = 2,27. Такие соли, как KCl, LiCl, NaCl и др., в воде полностью диссоциированы на ионы, т.е. ведут себя как сильные электролиты; в бензоле эти соли диссоциируют лишь частично, т.е. являются слабыми электролитами. Таким образом, одни и те же вещества могут проявлять различную способность к диссоциации в зависимости от природы растворителя.

2 . Температура.

У сильных электролитов с повышением температуры степень диссоциации уменьшается, у слабых – при повышении температуры до 60°С α увеличивается, а затем начинает уменьшаться.

3 . Концентрация раствора.

Если рассматривать диссоциацию как равновесный химический процесс, то в соответствии с принципом Ле Шателье добавление растворителя (разбавление водой), как правило, увеличивает количество продиссоциированных молекул, что приводит к увеличению α. Процесс образования молекул из ионов в результате разбавления затрудняется: для образования молекулы должно произойти столкновение ионов, вероятность которого с разбавлением уменьшается.

4 . Наличие одноименных ионов.

Добавление одноименных ионов уменьшает степень диссоциации, что также согласуется с принципом Ле Шателье. Например, в растворе слабой азотистой кислоты при электролитической диссоциации устанавливается равновесие между недиссоциированными молекулами и ионами:

НNО 2 Н + + NО 2 - .

При введении в раствор азотистой кислоты нитрит-ионов NO 2 ˉ (прибавлением раствора нитрита калия КNО 2) равновесие сместится влево, следовательно, степень диссоциации α уменьшится. Аналогичный эффект даст и введение в раствор ионов Н + .

Необходимо отметить, что не следует путать понятия «сильный электролит» и «хорошая растворимость». Например, растворимость СН 3 СООН в Н 2 О неограниченная, однако уксусная кислота относится к слабым электролитам (α = 0,014 в 0,1 М растворе). С другой стороны, ВаSО 4 – малорастворимая соль (при 20°С растворимость меньше 1 мг в 100 г Н 2 О), но относится к сильным электролитам, так как все молекулы, перешедшие в раствор, распадаются на ионы Ва 2+ и SО 4 2 - .

Константа диссоциации

Более точной характеристикой диссоциации электролита является константа диссоциации , которая от концентрации раствора не зависит.

Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:

AK A – + K + .

Поскольку диссоциация является обратимым равновесным процессом, то к этой реакцииприменим закон действующих масс, и можно определить константу равновесия как:

где К – константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.

Диапазон констант равновесия для разных реакций очень большой - от 10 –16 до 10 15 .

Диссоциация веществ, состоящих более чем из двух ионов, происходит ступенчато. Для реакции вида

A n K m nA – m + mK + n

константа диссоциации имеет вид

Например, сернистая кислота диссоциирует ступенчато:

H 2 SO 3 H + + HSO 3 –

HSO 3 – H + + SO 3 2–

Каждая ступень диссоциации описывается своей константой:

При этом видно, что

При ступенчатой диссоциации веществ распад по последующей ступени всегда происходит в меньшей степени, чем по предыдущей. Иначе говоря:

К д1 > К д2 >…

Если концентрация электролита, распадающегося на два иона равна С в , а степень его диссоциации равна α, то концентрация образующихся ионов составит С в α , а концентрация недиссоциированных молекул – С в (1–α) . Выражение для константы принимает следующий вид:

Это уравнение выражает закон разбавления Оствальда . Оно позволяет вычислять степень диссоциации при различных концентрациях электролита, если известна его константа диссоциации. Для слабых электролитов α<<1, тогда (1–α) → 1. Уравнение в этом случае принимает вид:

Это уравнение наглядно показывает, что степень диссоциации возрастает при разбавлении раствора .

В водных растворах сильные электролиты обычно полностью диссоциированы, поэтому число ионов в них больше, чем в растворах слабых электролитов той же концентрации. При этом силы межионного притяжения и отталкивания довольно велики. В таких растворах ионы не вполне свободны, движение их стеснено взаимным притяжением друг к другу. Благодаря этому притяжению каждый ион как бы окружен шарообразным роем противоположно заряженных ионов, получивших название «ионной атмосферы».